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ABSTRACT 

The problem of synchronization and detection of r a n c a n  pu-;e-position-modulation 

( PPM) sequences is investigated under the assumption of perfect slot synchronization. 

hlaxinium-likelihood PPM symbol synchronization and receiver algorithms are derived 

that make decisions based both on soft as well as hard data;  these algorithms are seen 

to be easily implementable. We derive bounds on the synibol error probability as well 

as the probability of false s-nclironization that indicate the existence of a rather severe 

performance floor. whir11 can  easily be the  liiriitiiig factor i i i  t lie overall system performance. 

The performance floor is inherent in the PPhI format and random data  and becomes more 

serious as the PPM alphabet size Q is increased. A way t o  eliminate the performance floor 

is buggested by inserting "special" PPM symbols in the random data  stream. 
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I. INTRODUCTION 

Pulse-position-modulation is a modulation format known to be optimal in various 

ways for the direct-detection optical channel (see for example [1.2,3]). Under Q-ary PPM, 

information is contained in the position of a signal pulse in only one of Q subintervals, 

known as slots, dividing the symbol interval. 

U'hen pulse-position-modulation is used in communication systems, the practice is to 

first achieve slc b t  synchronization before at tempting higher order synchronization and sym- 

bol decoding. Slot sychronization is usually obtained by using a tracking-loop as recently 

studied, for example, by C'hen and Gardner [4] and Ling and Ciagliardi [ 5 ] .  Although op- 

timal (in the maximum-likelihood as well as the mean-square-error sense) PPM slot and 

symbol synchronizers have also been recently derived [6,7], they have the disadvantage of 

being inore complicated to implement compared t o  the tracking-loop synchronizers that  

are well understood and easy to implement. The difficulty in implementing the optimal 

synchronizers stems from the need to record the exact arrival time of each detected photon, 

a task that may be difficult to achieve a t  high da ta  rates and large signal intensities. A 

further reason that makes tracking-loops more desirable for slot synchronization is that 

they have been shown to result in receivers with symbol error probahilit y perforniance 

ithin a fraction of a dB from the perfect slot synchronization case at reasonable signal 

h - e l s  [4]. K e  point out here that the authors in [4! are investigating the effects of slot 

s>-nchronization errors. only and thus assume that once slot synchronization is achieved, 

symbol synchronization is automatically obtained. This is equivalent to  assuming that the 

only aiiibiguit y in synibol synchronization is the  ambiguity in slot synchronization, which 

in practice is not a valid assumption since slot synchronization does not imply symbol 

s y n ch r on i z at ion. 

In this paper we investigate the problem of PPhl  symbol synchronization and decoding 

under the  assumption of perfect slot synchronization. For Q-ary P P N ,  the existence 

of slot synchronization still leaves unresolved a Q-ary ambiguity as to  the position of 

the PPM symbols. However. in contrast to the slot synchronization case where system 

error prohabilit y degrades gracefully wi th  the slot sj r ~ c l ~ r o r ~ i z a t  ion error. the efFect of non- 
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perfect symbol synchronization is catastrophic. One can easily see that a sequence of ,! 

random PPM symbols decoded under non-perfect symbol synchronization will result in all 

S symbols being decoded erroneously, irrespective of the size of the error. This ohservat.ion 

leads to the conclusion that the real bottleneck in system performance is due to the symbol 

synchronization subsystem which we investigate in the sequel. 

In section I1 we investigate and characterize the synchronization properties of random 

PPM sequences. In section 111, we derive ML symbol synchronization algorithms for the 

PPM. optical Poisson channel, both from soft as well as hard data. Here we also derive a 

bound on the synchronization probability, valid at high signal-to-noise levels. Section IV 

contains the derivation of optimal receivers that make sequence decisions in the absence 

of symbol synchronization. Also included in this section is a bound on the minimum 

achievable symbol error probability. Finally, we conclude with section Y. 

11. SYNCHRONIZABILITY OF PPM SEQUENCES 

In t,his section we investigate the synchronization properties of random PPM se- 

quences. Broadly speaking, t.hese are properties associated with our ability to identify 

uniquely (or not) the location of PPM symbols within a sequence of such symbols when 

only slot boundaries are known. Before we proceed further, we introduce some definitions 

and terminolog;!. to establish a common ground and facilit at,e later analysis. 

_-_____ Definition 1: -4 binary sequence of Q digits is said to  satisfy the PPM constraint and, 

thus, be a Q-ary PPM symbol only if exactly one out of the Q digits is a "one"; Q will be 

referred to as the PPhI alphabet size. 

It is easily seen from the above definition that for a g i ~ e n  sequence length -V there are 

Q K  valid PPM sequences and that they can be thought of as a subset of the 2 N Q  binary 

sequences of length NQ. 

Definition 2: .4 sequence of binary digits is said t o  be a valid Q-ary PPM sequence if, 

starting from the first bit, e z w q  consecutive subsequence in it  of length Q is a Q-ary PPM 

symbol. 
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Definition 3: Consider a Q-ary PPI4 sequence ( N  + 1) symbols long ( ( N + l ) Q  slots) 

and a sliding window of N Q  slots applied to the PPM sequence. For a given slot shift j ,  

j = 0,1,2,  ...,(Q - l) ,  we will refer to  the binary sequence within the window as a PPM 

binary subsequence at (slot shift) j .  It is obvious froni the definition that a PPM binary 

subsequence is not necessarily a PPM sequence. i.e., not all consecutive binary- sequences of 

length Q within the window are PPM symbols. Also obvious is the fact that if j = 0, then 

the PPM binary subsequence is a PPh l  sequence that coincides with the first IV symbols 

of the original sequence. Similarly, for j = Q the PPM binary subsequence is a PPM 

sequence that coincides with the last *'V symbols in the original sequence. Notice that slot 

shift j = 4 does not need to  be investigated in searching for symbol locations since it is 

equivalent to j = 0. 

Given the above definitions, we are now ready t o  derive some results. As a first step in 

characterizing the synchronization properties of random PPM sequences, we are interested 

in the following problem. 

Consider a Q-ary PPM sequence of length ( N  + 1) symbols, chosen a t  random from 

the set of Q(N+l)  possible PPM sequences, and a given slot shift j .  We are interested in the 

probability that exactly A- out of the ilr symbols within the PPM binary subsequence at 

slot shift j are Q-ary PPhl symbols. The usefulness of this quantity should be apparent in 

the context of syiiibol synchronization when only slot synchronization is present. Leaving 

the details of the derivation for Appendix A ,  we can show that this probability. defined by 

P(h-; j. 4, iY), is given by 

P(h-; j .  Q, il;) = (G) {(j,Ql(IiLl)(1 - j ,Q)(.v-~ib -L(1 - ~ ; Q ) ( K + ~ ) ( ~ / Q ) ( N - w  

(1) 

It  is obvious from the above expression that P(h- :  j. Q. S )  = P(h-; Q -j,  Q ,  Ar), which 

implies that  P(A- ;  j, Q, A') is symiiietric wi th  respect to forward and backward slot 

shifts froin the correct slot for symbol synchronization. .inother observation that can be 

readily made is that the above probabilitT is a convex function of j ,  achieving a minimum 

at j = Q / 2  when Q is even, as is usually the case. This implies that slots closer to the 

correct s p i b o l  sj-nchronization slot have a higher probabilit y of being erroneously chosen 



for symbol synchronization than slots further away. 

Of special interest is the case when A- = A-, P(*V; j .  Q. N ) ,  i.e., the probabilit,y that 

the PPM binary subsequence at  slot shift j is a PPM sequence. Easily obtained from ( I ) ,  

it  is 

( 2 )  A-+1  P(A’V: j ,  Q ,  1%-) = ( j / Q )  + (1 - j/Q)x’l. 

Equation ( 2 )  implies that there is a nonzero probability of identifying symbol locations 

erroneously, even in tlie absence of noise. A bound on  the probability of erroneous symbol 

synchronization is derived in the next section. 

In passing, we note that, P(A’; j, Q, N )  can be expressed as the ratio of the number 

of PPM sequences that,  for a given j, result in exactly K PPM symbols within the PPM 

binary subsequence at  j ,  to the total number of distinct PPM sequences of length ( N  1). 

Denoting the number of sequences resulting in A’ matches by D(h’; j, Q, X) ,  we then 

have 

D ( K ;  j ,  &, X )  = Q(N+l)  P(h‘ ; j ,  Q,  W .  ( 3 )  

We now turn our attention to the implications of (1) on syiiibol synchronization in 

the limit as the sequence length LY tends to infinity. It is readily seen that for any fixed 

h- .P(h- ;  J .  c). S )  -+ 0 as z4- -+ m. which implies that tlie iraction of sequences that 

result in  exactly A- matches diminishes with h’. However. the more important quantity is 

the probability that the number of matches A’ will exceed a given number r .  Specifically. 

of interest is the smallest value of T such that the probability of xiiore than T matches goes 

to zero as S + QG. for all slot shifts j = 1, 2, . . . ( Q  - 1). Obviously, this minimum value 

of r is a function of the PPM modulation format and the alphabet size Q only; moreover, 

the smaller it. is, the better the symbol synchronizer will be able to perform in the presence 

of noise for large LV. 

The following proposotion establishes the range of values of r such that, the probability 

of more than r synibol matches tends to zero with A-. 

Proposition 1: Let Pr[Ar 2 r ;  j . Q ,  -Y] be the probability that the number of symbol 

matches A’ within a PPM binary subsequence at slot shift j exceeds r for a given Q and 
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Then, if ( r / N )  > (1 - 1/Q) 

lim P r [ K  2 r ;  j ,  Q.  A\r] = 0 ( 4 )  ” c4 

for &l slot shifts j .  Conversely, for ( r / X )  < ( 1  - 1/Q).  there is some slot shift j such that 

lim P r [ K  2 r ;  j :  Q. .VI = 1. 

Proof We first prove ( 4 ) .  Using the Chernoff bound we have 

‘V>X 

is the characteristic function of the random variable K ,  easily obtained from (1). In order 

to  guarantee that (4) holds for all j ,  it is enough to  make sure that (1) holds for the j 

that  makes the right-hand side of ( 6 )  largest. From the easily established convexity of 

~ ( s ;  3 .  Q. -V) and its synnietry around j = Q/2,  we conclude that the niaximuni occurs 

at one of the boundaries. say j = 1. Letting p = 1 / Q we have 

Observing now that the second term in (8)  is the larger term we can further bound the 

right-hand side of (8)  by twice this term: coiiibining with the bound in (6 ) .  we get 

( 9 )  
n; 

Pr[h-  2 r ;  j ,  Q ,  5 2(1 - p)exp( -sr) [ (  1 - p ) e ”  - p !  . 5 2 0 .  

Further tightening the  bound wi th  respect to s. we finally obtain for ( T / ~ V )  2 (1 - l / Q )  



In (10) E[qllh] and hb(z) are the cross ent,ropy (inaccuracy) and binary entropy functions 

defined respectively by 

E[qllh] = - q  En(h)  - (1 - q ) l n ( l  - h )  (11) 

for soiiie probabilities q. h and T .  It is well known that the inaccuracy is always greater 

than or equal to the entropy (see for example [8:), which implies that the exponent in (10) 

is non-positive. Thus,  in the region ( r / N )  > (1 - 1,'Q) where the hound is valid, taking 

the limit as .V -+ cx yields (4). 

\Ye now turn our attention t.o the converse in ( 5 ) .  Since we only need to show con- 

vergence t o  unity for some j ,  we choose j = (Q  - 1)  ( a n  educated choice). We start  by 

deriving the following Chernoff bound 

Following arguments paralleling those above we obtain for j = (Q  - 1) and ( r / - V )  < 
(1  - 1iQ) 

u-here we have used the fact that PrjK < r ;  j .  Q. A-. 5 Pr:h- 5 r ;  j ,  Q. -Y:. The 

condition ( r / l V )  5 (1 - 1/Q) gives a range of values of r for which the bound is valid 

and is derived from the condition s 5 0. Taking limits as S ---t 3c in (14) we obt,ain 

Pr,K < r ;  j , Q, A'] -+ 0 when ( r / - Y )  < (1 - l!Q), which in turn implies ( 5 ) .  This 

conipletes the proof of the proposition. 

One of the implications of the theorem is that for large (theoretically infinite) N ,  the 

fraction o f  synibols within any PPhl binary subsequence that are valid PPM symbols can 

be quaranteed to be less than (1 - l /Q) .  In other words. the number of PPM symbol 

iiiatches A- for any slot shift j = 1, 2, , ( Q  - l ) ,  satisfies. for large -V 



which implies that. the number of mismatched symbols, call it. d, satisfies 

From (16)  we can see that for large K ,  the minimum number of symbol mismatches for 

any slot shift j ,  call i t  dmin, is 

dmin = hT/Q. (17)  

The quantity dmin can easily be paralleled to the minimum distance of a block code, only 

now dmin is the minimum average distance between random PPM sequences for any slot 

shift J = 1. 2 , .  - . , ( Q  - 1) away from the correct synchronization slot. Clearly, the larger 

dmin is. the  better the symbol synchronizer will be able to identify symbol locations in the 

presence of noise. Another obvious observation from (17) is that  dmin is monotonically 

decreasing with the PPM alphabet size Q .  which in turn implies that  synchronization 

performance deteriorates as Q is increased. This observation was made also in [4] and [7] 

for the slot and PPM symbol synchronization problems respectively. Later in this paper we 

relate the minimum distance dmin for random PPM sequences to the smallest achievable 

synchronization error probability. 

In concluding this sect ion. we note that the xiiinimum average distance dmin derived 

above is for random PPhl  sequences, which indicates the existence of sequences with larger 

dn,in. The problem of designing such sequences is briefly investigated in the next section. 

\Ye next turn our attention to the problem of deriving optimal PPM symbol synchro- 

nization when slot synchronization is present. 

111. ML SYNCHRONIZATION 

Our application area here is the direct-detection optical Poisson channel. For this 

channel. i t  can be easily established that when only slot synclironization is present, the 

sufficient statistic is the number of photons (events) observed in each slot interval of T’ 

seconds. For the Poisson direct-detection channel. the number of counts observed in dis- 

tinct slot intervals are independent Poisson randoin variables with intensity ( A ,  + A,) if a 

signal pulse is present in  the corresponding slot and A, otherwise; A, and A, are known 
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as the signal and noise intensities respectively. We derive synchronization algorithms from 

two kinds of observat,ions, defined in the sequel. 

a )  Soft -data observations: 

In deriving the M L  synchronization algorithm here, we assume that the receiver has 

available ail observation vector R = (Kl , K2, - . . I < N Q )  with elements being 

the nuiiiber of counts in -7-Q observed. consecutive slots. IVe will refer to  the da ta  in R as 

soft-data. M’ithin this observation window there are (-’V + 1) symbols, two of them a t  the 

boundaries partially contained. The problem is to  estimate the location of symbols within 

the observation interval. 

. h-Q. 

Denoting by rn t,he variable associated wit.h the start. of a symbol within the first Q 

slots in the observat.ion interval, a M L  synchronizer implements the following 

where d = ( d l .  d2 ,  . . - .  d Q ,  , ~ N Q )  is the random modulation vector of intensities 

within the observation interval. In writing (18), we assume that all modulation vectors 

are equiprobable. Following the general approach described in 16, 71 and making the 

assumption that the first partially contained symbol within the observation interval is a 

continuation of the last partially contained symbol, we obtain as the likelihood statistic 

111 (19) ,  X = (1 + Xs/X,) and h’, is the number of counts observed in the i - t h  slot in the 

observation interval. The indexes in (19) are interpreted iiiodulo Q-V to account for our 

approxiination above. We note here that this approximation was not necessary in deriving 

the -1IL synchronizer but was made to reduce complexity at no practical performance loss 

for values of of ,1’ greater than four is. ‘TI. 

A further approxiniation to (19) can be obtained by using only the largest term in the 

sum over j to yield 



We will refer to  (20) in the sequel as the max-rule. In (20), j ,  is t,he value of j. 1 5 j 5 Q, 

that. for a given i and rn maximizes h ' ( t - l ) ~ + J + m .  

Coiiiput er siiiiulation results comparing the probability of correct synchronization. 

Pc9.  for the synchronizers in (19) and (20)  are reported in Figures 1,2 and 3 for different 

values of Q and A-. These results indicate that the much simpler synchronizer i n  (20) 

performs practically as well as the significantly more complicated one in (19). Also ev- 

ident from the graphs is that for the same signal energy per slot X,T', synchronization 

performance degrades with Q and improves with ,V, as predicted in the previous section. 

Finally, it is clear from the figures that a performance floor exists which is practically in 

effect for signal levels of about X,T' = 10.0. This error-floor is investigated later in this 

section. 

We now turn our attention to deriving synchronization algorithms when the receiver 

observations consist, of hard-data, obt.ained from the soft-data vector R by making hard 

decisions in each slot interval. 

b )  Hard-data observations 

Here we assume that the receiver has available the binary vector of observations X = 

(SI. x.?. * . *  . T Q ,  . ~ ,vQ)  obtained by making hard-decisions c m  the vector R. By 

this we mean that the receiver looks at K t ,  i = 1, 2. a m - ,  AVQ7 and decides that x, = 1 

or T ,  = 0 according to whether a signal pulse is detected ( a  "one7') or not ( a  "zero") 

respectively; i.e., 
P T / ~ ~ O ~ ~ ~ ~ / R ,  = K,]  
Pr [ "zero" /R, = K,] 1. < 

I ,  = O  

In  (21  ), R, is the (Poisson) random variable associat,eed wi th  the number of counts in the 

i - t h  slot and A-, are the observed counts. The above test can easily be shown to reduce to 

where the optiiiial threshold -, is given by 

X,T'+Zn ( Q - 1 )  
In(1 + Xs, /Xn)  . 

- / =  (23)  
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It is obvious that further processing on the vector X to  derive synchronization and perform 

decoding is much easier to implement compared to the soft-data case. Another advantage of 

algorithms derived from hard-data is that their structure does not, depend on the complete 

statistics of the channel. The above reasons were partly why hard-data was employed in 

191. 

Before we proceed with the derivation of the ML synchronization algorithm. we intro- 

duce the following quantities: 

Then 

P r p j  = O/dl = 11 = (1 - P11). 

The above probabilities can be easily precomputed given T', Q and the signal and 

noise intensities A, and A, respectively. Under the assumption of equiprobable PPhI 

symbols, the h.IL synchronization rule maxiiiiizes over 0 5 m 5 ( Q  - 1 )  the following 

st atistic 

d 
A - 1  Q Q 

The second equality above is a result of the independence between choice of PPM sym- 

bols. which breaks the expectation over sequences to  expectations over individual symbols. 
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The third equalit,y should be self evident. Observing now t>hat the product over all j ' s  and 

i's of P r [ X t Q + J + m  = Z , Q + ~ + , / T I I ,  d , Q + J + m  = Oi is not a function of m, we can equiva- 

I en t lv maxi ini ze . 

r = O  Lk= 1 J 

where 

In deriving ( E ) ,  we have dropped terms not dependent. on m and taken the logari 

of the result,ing expression. Further not,iiig that by multiplying l i Q + k + m  by any cons 

does not affect the maximization, we finally obtain 

where 
Pl 1 

(1 - Poo) l :Q+k+m. l iQ+k+m = 

It is clear that Z 1 ~ + k S m  takes one of two values according t o  

1, if I, = 1 
C, if x, = O ?  4 = { 

hm 

ant 

where 

(32)  
(1 - P11)(1 - Po01 - 

C =  
p11 Po0 

Since for a practical system Pll 2 (1 - I'll) and Po0 2 (1 - Poo). i t  is 0 5 C 5 1. For a 

good system (Pll >> (1 - Pll) and Po0 >> (1 - Poo)) C will be very close to zero and 

exactly zero when either Poo or Pll is unity. In this case, the optimal synchronizer from 

A situation when Po0 = 1 arises, for example. when A, = 0 resulting in an  erasure 

channel. It is t!ien seen that the optimal synchronization rules for a perfect channel where 

both "zeros" and "ones" are decoded correctly with probability one is the same as that 



for the erasure channel where only “zeros” are detected correctly all the  time. This of 

course does not imply that the performance of the synchronizers for the two channels are 

identical. From the information theory point of view. for both the perfect and the erasure 

channels. it is the presence of a pulse that carries all synchronization inforination. utilized 

fully by (33) .  

In general, for channels wit,h small noise intensities A, and relatively large signal 

intensit.ies A,, ( 3 3 )  can be used as an approximation to  (29) to  further reduce complexity. 

Having derived optimal synchronization under the assumptions of both soft as well 

as hard-data: we now turn our attention to the investigation of the ultimate performance 

achievable by such synchronizers. 

c )  A bound on synchronizat.ion probabilit p 

Our interest here is deriving an upper bound to the probability of correct synchro- 

nization, Pc8.  It is clear that  the synchronization probability is bounded from above by 

the probability that one or more PPM binary subsequences are PPM sequences, in which 

case a random selection must be made. Denoting this randoin sequence limited probability 

by P,-,l. we have 

where Dk is the number of PPM sequences resulting in exactly IC slot, shifts for which PPM 

binary subsequences are valid PPM sequences. The probability of k such matches, Pm(k), 
is 

P, (k )  = Dk * Q - ( N + l ) .  (35) 

Leaving the details for Appendix B, we can derive the following expressions 



and 

DQ-I = Q 

The derivation of the above equations was obtained by repeated use of the following 

observation. 

Proposition 2: For a given PPM sequence, in order for the PPM binary subsequence at 

j to  be a valid PPh l  sequence it is necessary and sufficient that either all pulses (pulsed 

slots) are before the j - t h  slot all after the j - t h  slot. 

The proof of t,he above proposition is easily seen by construction. 

We are now ready to  derive a bound on the random sequence limited probability P,.,l, 

and by extension t,o the probability of correct synchronization P,, . 
Proposition 3: 

holds for all Q and :IT 

The following bound on the random sequence limited probability Prdl 

with equality for Q = 3 and Q = 3 .  

Proof: The following inequality is obvious 

where equality is when Q equals two or three. [!sing the fact that 

k = 2  

and the expressions for the various probabilities in equations ( 3 7 ) ,  (39)  and (41)  we obtain 

the required bound. 
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We note that the bound in (42) will be tight for all values of Q when N is sufficiently 

large to make the probability of two or more slot. shifts for which PPM binary subsequences 

are PPM sequences negligibly small. This fact is verified in Table 1. where simulation 

results are compared to  our bound. 

A lower bound on the probability of erroneous synchronization P,, = ( I  - Pes) is 

( 45 1 ( X - t l )  ( N + l )  - - (  1 - 2 / Q )  1 
3 p e 8  2 (1 - 1/Q) 

which is achieved at  high signal-to-noise levels and sufficiently large N. It is clear from (45)  

that  the error-floor rises with increasing Q and decreasing N as predicted by the decrease 

in dmin in equation (17).  Let us now show that the distance dmin enters the bound on 

erroneous synchronization probability in a natural way as AJ -+ OG. For a given dmin, we 

have Q = -V,/dmin. Then 

1 
3 (46) 

Since the second term above is at least an order of magnitude smaller than the first for 

reasonably large dmin ( say dmin 2 3),  we obtain, for very large (theoretically infinite A') 

and reasonably large dmin 

- - , -dm,n - - e - 2  dmin 

(47) p > e -dmin  
e8 - 

Equation (47) indicat,es an exponential decrease in the error-floor m7it.h increasing &,in. 

-4s an  example of how the bound in (45)  can be used in a system design we derive 

next the minimum number of slots that need to be processed in order to quarantee a given 

performance. The number of slots observed, 11' = Q( .Y -L 1). is a measure of the receiver 

complexity and is an important parameter in practical implementation. We show that the 

following proposition is true. 

Proposition 4: The smallest number of slots T'c'min that need to be processed to guarantee 

an error-floor not more than some P e f  is 
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and is achieved with binary PPM. 

Proof: We have V’ = Q ( - W  + 1) 2 2(Ar + 1) with equality iff Q = 2. Furt,her: we have 

which implies (:1’ + 1) 2 -log, (P,f) with equality iff Q = 2. Combining the two inequal- 

ities above, we get 

w >_ -21og, (Rf) 

wit,h equality iff Q = 2 .  This proves the proposition. 

We end this subsection by noting that the bound in (42) is valid also for the  re- 

sults report,ed in [ la ]  where PPM symbol synchronization is derived in the absence of slot 

synchronization. Next, we investigate ways to remove the error floor predicted above. 

d )  Sequence Design 

We start  with a definition. 

Definition 4: A PPM sequence will be said to be synchronizable if no PPhl  binary sub- 

sequence in it is a valid PPM sequence. Equivalently, a PPM sequence is synchronizable 

if each PPM binary subsequence of it contains at least one symbol that is not a PPhl  

symbol. 

It is clear froiii the above definition that symbol locations within synchronizable PPhl  

sequences can be uniquely ident.ified in the absence of noise. As we derived earlier, for a 

given Q and S there are Do synchronizable PPM sequences as given by equation (36) .  

IVe are now ready to prove the following propositions. 

Proposition 5 :  When a synchronizable PPM sequence is inserted in another PPM se- 

quence, t he resulting longer sequence is sgnchronizable. 

Proof: By the definition of a PPM sequence &l symbols within it must be PPM symbols. 

However. for any slot shift j = 1, 2, , ( Q  - l ) ,  there is at least one symbol in the 

inserted synchronizable sequence that is not a PPhl  synibol (by definition). Since the 

inserted sequence is a part of the longer sequence. this implies that at least one symbol in 

the longer sequence is not a PPh l  symbol for all j = 1. 2 .  . - . ( Q  - 1). This implies by 
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definition 4 that the longer sequence is synchronizable, which completes the proof. 

Proposition 6: A Q-ary sequence is synchronizable if and only if it contains both symbols 

1 and Q: symbol 1 has the pulse in the first slot and synibol Q has the pulse in the  Q-th 

slot. 

Proof: a )  14-e first prove the forward statement. If both symbols 1 and Q are in the 

sequence. then there is no slot shift j = 1, 2, * . , ( Q  - 1 ) for which all pulses are before 

or after 3 .  Thus, by proposition 2 no PPM binary subsequence is a PPM sequence and, 

thus, by definition 4 the sequence is synchronizable. 

b )  If not both symbols 1 and Q are in the sequence, we distinguish three possibilities: 

only symbol 1 a only symbol Q is present neither is present. If symbol 1 only is present. 

then the statement “all pulses are before slot (Q  - 1)’‘ is true which by proposition 2 it 

implies the sequence is not synchronizable. Similarly, if symbol Q only is present, then 

the statement “all pulses are after slot 1” is true which implies again that the sequence 

is not synchronizable. Finally, if neither symbol is present, both of the above statements 

in quotation marks are true. which again implies the sequence is not synchronizable. This 

completes the proof. 

To facilit,at,e reference in t.he sequel, we will refer t o  the pair of symbols 1 and Q as 

the Knchronizable pair. 

It is clear from the above proposition that Do in equation (36)  gives the number of 

sequences from the set of Q ( A ~ + ’ )  possible sequences that contain at le; .;t one synchro- 

nizable pair. Obvious from the proof of the proposition. also. is the fact that it doesn’t 

matter where the two symbols are located within a sequence to make it synchronizable. 

fin all^-. we observe that the inore synchronizable pairs a sequence contains, the better its 

synchronization properties in the presence of noise. 

One way of removing the error-floor predicted by (42)  is to periodically insert in 

the random data stream a synchronizable pair. If, for example, a synchronizable pair is 

inserted every L PPM synibols, all PPM sequences of length greater or equal to L will be 

synchronizable according to proposition 5 .  The efficiency E of such a scheme as measured 



by t,he number of informat.ion symbols per transmitted symbol will be 

which approaches unity as L is increased. It is clear, however. that the smaller L is, 

the better chances for correct synchronization in the presence of noise will be. In cases 

where a special synchronization pattern is inserted in the data stream to  facilitate frame 

synchronization (see for example [IO, 1 1 ,  la]) ,  the extra reduction in efficiency to  improve 

symbol synchronization can be avoided by choosing a pattern with as many synchronizable 

pairs as possible. Such a pattern will aid in both symbol as well as frame synchronization 

when they are obtained separately. 

In the next section. we investigate the problem of deciding what the symbols within 

an  observation interval are as opposed to  where they are which we analyzed above. We do 

this under the assumption of slot synchronization only. 

IV. DETECTABILITY OF PPM SEQUENCES 

- a1 M L  Receivers: 

In this section we turn our attention to the problem of PPhl  sequence estimation 

when only slot locations are exactly known. Our observations consist of the vector R = 

( 1-1. K2. . . . A-Q. - . , A’NQ) of slot counts. 

Vnder the assumption of equiprobable sequences. an optimal receiver is a ML receiver 

that chooses as its sequence estimate the sequence d tha t  maximizes 

Q - 1  

p(R/d)  = p(R/d,  m ) P r ( m ) .  
m=O 

In (50).  P r ( m )  is the a priori probability that, the first PPM synibol in the interval [0, QT’; 

starts at time mT‘. Assuming that no a priori knowledge exists, then Pr(n.1) = 1 /Q for all 

ni. I‘sing the fact that the elements of R are conditionally independent Poisson random 

variables and dropping teriiis not dependent on the niodulation sequence. we obtain as our 
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opt.ima1 receiver 

( 5 1 )  max P(d) = exp ,!n(-X) K J , ( ~ ) + ~  . 
d € A  

In deriving (51) we have assumed that the first synibol in  the observation interval is a 

continuation of the last. partially contained symbol. -4s for the synchronization case. this 

approximation reduces substantially the complexity of the receiver at no practical per- 

formance loss for greater than about four ill:. To accommodate this approximation. 

indexes in (51) are interpreted modulo Q N .  The set A is the set of all possible distinct 

Q-ary PPhl sequences of length hr and J,(d), i = 1 ,2 , .  . N .  is a set of indexes indicat- 

ing the slots within sequence d that contain the pulses. For example, the Q = 4 PPM 

sequence consisting of the N = 5 symbols {1 ,3 ,3 ,4 ,2}  can be described equivalently by 

1 m=O Q-l [ , = I  

.v 

{ J z ( d ) } l ~ ,  = {1,7,11,16.22}. Finally -Y = (1 - X,/X,) is as defined earlier. 

Although each computation of (51) is relatively easy to  perform, the complexity of 

the receiver is still overwhelming since QN statistic need to  be evaluated before a decision 

is made. However, following arguments similar t o  those in [llj, we can show that only Q 

of the Q” sequences are most likely to have been sent. Denoting the set of Q candidate 

sequences by A*.  the receiver in (51 ) becomes (with no loss in performance) 

niax ( ( d )  . 
d € A *  

The set o f  Q candidate sequences A* is obtain in the following way: 

Step 1: Ciroup the observation vector into Q consecutive slots per symbol and decode it into 

a sequence of AV PPl4 symbols. Store the decoded sequence as a possible carididate. 

Xote tha t  decoding the observation vector into PPM symbols is done by choosing the 

largest number of counts in each group of Q slots, which is the optimal strategy when 

synchronization is present. 

Step 2: Cyclically shift the observation vector by one slot to the left and go back to step 1. 

Repeat until the observation vector is cyclically shifted by ( Q  - 1) slots. 

The result of the above procedure is Q candidate sequences which are then used 

to evaluate [ (d )  and make a final decision by choosing the largest. The idea behind the 
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tremendous reduction in the number of evaluations of C( d)  is simple: we know that symbols 

start  at one of the times mT',rn = 0.1 , ( Q  - 1)  corresponding to the start of the first 

Q slots in the observation interval. Thus. by decoding the observation vector for each 

possible m = 0.1, e e a ,  ( Q  - 1 ), we are assured that one of the Q decoded sequences is 

the one we would have obtained have we had perfect synchronization. This implies that  

liniiting our search in the set A* does not increase our error probability, since the best we 

can hope to achieve is the performance of a perfectly synchronized receiver. 

To illustrate the above approach, we take a simple example. 

Example 1: Let Q = 3, N = 4 and the observation vector R = ( 0 , 4 , 2 , 1 , 5 , 3 , 2 , 3 , 1 , 6 , 3 , 5 ,  ) 

Decoding this vector into a PPM sequence, we obtain do = (2 ,5 ,8 ,10 ) .  Cyclically shifting 

R by one slot to  the left and decoding we obtain dl = (1 ,4 ,9 ,11 ) .  Finally shifting by 

another slot we get dz = (3 ,4 ,8 .10 ) .  Evaluating (52) using I n ( X )  = 1.3 we get [(do) = 

1.462 x lolo,  QdI) = 1.957 x 10" and l(d2) = 5.335 x 10" and thus the decision is 

d = dl = ( 1 , 4 , 9 , 1 1 ) .  In a practical implementation of ( 5 2 )  only the first ( N  - 1 ) symbols 

in the decoded sequence will be retained as valid symbols since the last one is actually 

the concatenation of two partially complete symbols and is likely to be in error. For our 

example above only the subsequence ( 1.4.9) will be retained. By properly allowing overlap 

between consecutive observation intervals. all synibols are effectivelj- decoded. 

Approximations to  (51)  can be derived that further reduce complexity. An obvious 

one is to maximize with 

term in the sum. i.e. 

respect t.0 d E A* not the sum over all m but only the largest 

N 

In ( 5 3 )  r77*(d) is the value of rn = O . l . - . - . ( Q  - 1)  that maximizes the inside sum in (51) 

for a given d. What we have in effect is a joint estimation of the n~odulation sequence and 

synchronization. i.e. (53)  is equivalent to 

lye next turn our attention to t,he performance achievable by the above receivers. 
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b )  A bound on error probability 

As with the synchronization problem. here we are interested in finding a bound on 

the ultiniat e perforniance that can be achieved by the receivers described above. 

Our starting point is the observation that when a receiver detects a sequence at the 

wrong location, then t lie sequence is detected erroneously. This implies that the probability 

of sequence detection P3d is bounded by the probability of correct synchronizat,ion P,,, i.e., 

P3d 5 Pc3. which in turn yields 

We observe that the PPM format imposes a severe error-floor on t,he sequence detection 

prohabilit y when symbol synchronization is absent. 

We now t,urn our attention to  t,he symbol det.ection probability Pdyd and prove the 

following proposi t.ion. 

Proposition 7 :  The symbol det.ection probability is bounded by 

(56 )  

Proof Letting psyd be the synibol detection probability in the absence of any channel 

noise. we have P3yd 5 Payd. We further observe that .  in the absence of noise. when a 

sequence error is made (due to  wrong synchronization ), &l the syriibols in a sequence are 

received incorrect 1;v; ot herw~ise, all symbols are received correctly. From this observation 

we infer that P8,,d equals the probability of sequence detection in the absence of noise, 

which in tu rn  equals Pr3~.i.e.,~3yd = Pr31 . We thus have PSyd 5 Pr3~ which with equation 

( 1 2 )  imply (56) .  This completes the proof. 

The symbol error probability floor predicted by (56)  in the absence of symbol syn- 

chronization can be very severe, especially fcjr large values of Q. As an example, Q=256 is 

an alphabet size considered for some applications: if an error-probability floor of at most 

IOp2 is required. a siiiiple calculation shows that at least 435,200 slots need t o  l e  processed 

(rV=1700) in  order to satisfy the performance requirements. 



V. CONCLUSIONS 

We have considered the problem of synchronization and detection of random PPM 

symbols in the presence of only slot synchronization. In characterizing the synchroniza- 

tion properties of PPhl symbols imbedded in long random PPM sequences, we introduced 

the iniriiniuni distance d,,, . Froin our analysis we concluded that synchronization per- 

formance improves with the length of the observed sequence and degrades with increasing 

PPh l  alphabet size. 

In section I11 we derived optimal and suboptimal symbol synchronizers and a lower 

bound to the si-nchronization error probability; the error floor was seen to be due to the 

PPM modulation format. A way to remove the error-floor was suggested which consists of 

inserting periodically in the random data  stream a pair of "special" symbols. The insertion 

of these symbols may be necessary t o  remove the error-floor, especially for large values of 

Q where it is most severe. Maximum- likelihood receivers that make sequence decisions in 

the presence of slot synchronization only are derived in section 117 as well as bounds to the 

sequence and symbol detection probabilities. We observed here that the symbol detection 

probabilit J- is bounded by the probabilit J- of correct synchronization. 

Oiir conclusion is that for channels where t lie mechanisms that  can cause randoni slot 

shifts are such that the phase in a given observation interval cannot be reliably predicted 

froni previous observation intervals. the symbol error-floor is severe. especially for large Q. 

In these cases, some signal design to eliminate the error-floor is necessary. 
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APPENDIX A 

Derivat.ion of Equation (1 ) 

For a given alphabet size and sequence length (-1- i 1 )  let Pr [ h - ; j / S i  = i] be the 

probability that A' of the syinbols within the PPAl binary subsequence at j are PPM 

symbols, given that the first symbol in the sequence is S1 = i. i = 1 , 2 , . . .  .Q,. For a given 

j ,  we distinguish two cases: either i 5 j or i > j .  For i 5 j ,  the probability that h- of the 

K synibols are PPI1 symbols is the probability that Ii of these symbols have pulses in the 

first j slots. Since symbols within a sequence are randomly chosen, the probability that Ii 

of the ,V symbols have pulses before or at the j - t h  slot is (j/Q)'-(l - j /Q)"-h- .  Since 

there are ( ) sets of Ii symbols we have 

Now, for Q 2 i > j, in order for A' symbol matches to occur it must be that E; symbols 

have pulsed slots aft.er t.he j - t h  slot, which implies 

(2A)  Pr  [K;j/S1 = i] = (;)(1 - j / Q ) K ( j / Q )  N - h -  , i = ( j  + 1 ) : 2 - - . : Q .  

A l l  we need t,o do now is expectate over all Q first symbols i. all equiprobable. Per- 

foriiiiiig the expectation yields equation (1). 



APPENDIX B 

Derivation of Equat,ions (36)  - (  41 ) 

We first derive equation (36) .  Here we are interested in the number Do of sequences 

for which no PPM binary subsequence is a PPhl  sequence. Our approach is to start 

with the Q(.V 4 1) possible sequences and then subtract all unwanted sequences. rising 

proposition 2. we must subtract all sequences that have all their pulses after the j - t h  

slot for j = 1.2 , .  . - , (Q  - 1) and all sequences that have all their pulses before the j - t h  

slot, j = 1.2, - e ,  ( Q  - 1). It is easily seen that there are ( Q  - l ) (N+l )  of the former and as 

inany of the letter; (Q  - 2)(''+') of these sequences belong to both categories. Subtracting 

2(Q - l)(N-tl)  from and adding (Q  - 2)(''+') to avoid subtracting sequences twice 

yields (36) .  (37)  is obtained by dividing (36)  by Q("+').  
. 

Let. us now compute the number D1 of sequences that have exactly one PPM binary 

subsequence which is a PPM sequence at some shift j = 1 ,2 ,  , (Q  - 1). If we let X(j)  

be the number of sequences whose PPM binary subsequence a t  j is a PPM sequence, we 

have 

For a given j ,  X ( j )  is the number of all the sequences that have either all pulses before j or 

all after j .  It is easily seen that there are j N + '  of the former and ( Q  - J ) - ~ + '  of the latter. 

From the jl"+' sequences we must subtract sequences that have all pulses after slot 1 or 

hefore slot ( j  - 1) since these are sequences that result in PPhl  sequence at some slot shift 

1 < 1;  there are 2 ( j  - I)"+' - ( j  - 2)"" such sequences for Q > 2. Similarly, from the 

( Q  - j  )'v-tl sequences we must subtract all those that have either all pulses after the ( j  t 1)  

slot or all pulses before (Q-1) ( and after j) :  there are j2( Q - j - l)"tl - ( Q  - j - 2)N+1]  

such Sequences. Denoting by I , ( j )  the number of sequences that have exactly one match 

at j & have all pulses before j and by I 2 ( j )  those that have exactly one match at j 

all pulses after j .  we have for Q > 2. 

( 2 B )  



and 

07(Q - j )  = 1 
( Q  - j)”” - 2(Q - j - l )NS1 + ( Q  - j - 2)IV+I: ( Q  - j )  = 2 . 3 , .  . e ,  ( Q  - 1). I 2 ( j )  = { 

It is clear that X ( j ’  = Il(j) + I z ( j )  and that X ( j )  = X ( Q  - j ) .  Then 

0 - 1  Q - 1  

3 = 1  J =  1 

= 2 [(Q - 1 )  Ni-l - ( Q  - 2)IVi-l - 11 , Q > 2. 

For the special case Q = 2 it. is easily seen by inspection that  D1 = 2 which along 

with ( 4 B )  yields (38) .  Equation (39) is obtained by dividing by Q(NS1). 

Finally. to obtain (40)  and (41 ) ,  we observe that in order for all PPM binary subse- 

quences at  I = 1 , 2 , .  . , (Q  - 1 )  t o  be valid PPhl sequences it must be that  all ( N  + 1) 

symbols in a sequence are the same. Since there are Q such sequences, we obtain (40) from 

which (41 )  follows. 
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FIGURE CAPTIONS 

Figure 1: Simulat,ion results for the synchronizat.ion probabilit,y P,, for Q = 2, X = 

5,lO. 

Figure 2: Simulation results for t,he synchronization probability P,, for Q = 8: N = 

20.40. 

Figure 3: Simulat.ion results for the synchronization probability P,, for Q = 16. ,li = 

20.40. 

TABLE CAPTIONS 

Table 1: Comparison between simulations and t,he bound in (42). 



Y 

N SI - -  

TABLE I. COMPARISON BETWEEN SIMULATIONS 

AND THE BOUND I N  (42) 

Q=2 

1 IT L AT1 0 ?r' S BOUND 

5 0.9iO 0.969 

10 0.999 0.999 

13 1 .ooo 1 .ooo 
20 1 .ooo 1 .ooo 
2 5 1 .ooo 1 .ooo 
30 1 .ooo 1 .ooo 
3.5 1 .ooo 
40 1 .ooo 

- N 

5 

10 

1 5 

20 

25 

30 

35 

40 

SI M IT L AT1 0 h' S 

0.490 

0.741 

0.872 

0.933 

0.966 

0.982 

0.991 

0.994 

1 .ooo 
1 .ooo 

Q=8 

BOIJND 

0.566 

0.756 

0.870 

0.932 

0.965 

0.982 

0.991 

0.995 

Q=4 

SIMY LATI OK S 

0.765 

0.944 

0.986 

0.996 

0.999 

1 .ooo 
1 .ooo 
1 .ooo 

SIMULATIONS 

0.270 

0.484 

0.620 

0.720 

0.809 

0.858 

0.897 

0.925 

gvJ 
0.773 

0.944 

0.987 

0.997 

0.999 

1 .ooo 
1 .ooo 
1 .ooo 

Q = l 6  

BOUYD 

0.447 

0.563 

0.665 

0.148 

0.813 

0.862 

0.899 

0.926 
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